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J. Zhou∗, P. Jiménez†, M. Merino‡, P. Fajardo§ and E. Ahedo¶

Equipo de Propulsión Espacial y Plasmas, Universidad Carlos III de Madrid, Leganés 28911, Spain

Currently, the main problem for Helicon Plasma Thrusters (HPTs) is the lack of knowl-
edge about its operation, and thus there are not proper guidelines for its design. In this
paper, a novel 2D asymmetric code is proposed as a tool that could improve the understat-
ing of the physics behind and acts as a guidance that leads to a competitive design. This
code fully models all the aspects of the plasma discharge. In the code, a hybrid approach is
considered for the plasma production and transport: a fluid model is used for electrons and
a Particle-In-Cell model for heavy species, which is a trade-off between computational feasi-
bility and solution accuracy. As to the plasma-wave interaction, a frequency domain Finite
Difference model based on a cold plasma is considered. The structure of the code and the
integration of the different models are explained. The main difficulties in the development
of this code are to find numerical algorithms that handle properly the low collisional and
anisotropic electron fluid and the complex modelling of the plasma-wave interaction. The
advances achieved in these difficulties are presented and discussed. After that, in order to
show the capability of the code and its potential application as a guidance in real designs,
this is used to run a simulation for a HPT thruster with a realistic configuration. From
the simulation, 2D color maps of the discharge properties and thruster performances are
obtained and studied. The study shows that the results are consistent physically and has
allowed to propose improvements to its configuration.

I. Introduction

The Helicon Plasma Thruster (HPT) is a novel electric propulsion technology still in a research phase.1–5

This technology is based on a helicon source to produce and heat the plasma, and a magnetic nozzle to
generate thrust. Due to its characteristics, it has potential advantages: the lack of electrodes, thus reduced
erosion problems and a longer lifetime; and the high throttlability due to the capability to act on the input
power, the mass flow and the magnetic nozzle. However, the main drawback of this thruster is the poor
performance, the current prototypes report thruster efficiency lower than 20%,6,7 which are not competitive
yet with the mature Hall Effect Thrusters (HET) and Gridded Ion Thrusters. One of the reasons for this
low efficiency is that the physics behind HPT is not completely understood yet, which makes difficult its
design.8,9

Our research group is developing a novel 2D axisymmetric code, HYPHEN. This code is aimed to be
a multi-thruster simulation platform with applications for different electromagnetic thrusters, based on an
externally applied stationary magnetic field to produce thrust by means of electromagnetic forces; and it is
meant to solve self-consistently the complete plasma discharge. Its development started with HET,10–13 and
recently it has been improved, adapted and extended to HPT.14,15 In a HPT there are two distinguished
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process in the discharge: (i) the plasma production and transport; and (ii) the plasma heating process via
interaction with the radio-frequency waves, which is particular for these technologies and is not present in
HET. The selected formulation for process (i), which has been inherited from the HET, is a hybrid one,
consisting of a Particle-In-Cell (PIC) model for the heavy species and a fluid one for electrons. A remarkable
feature of the electron formulation is the use of a Magnetic Field Aligned Mesh (MFAM) in order to handle
its anisotropic character due to magnetization. For process (ii) an approach considering a cold plasma has
been developed based on a Finite Difference model, and that works on the frequency domain.16,17

The paper is organized as follows. Section II describes the general structure of the code. Section III
presents shortly the physical models implemented in the code and the numerical algorithms used to solve
them. Section IV discusses the simulation results for a particular HPT thruster in order to show the
capabilities of the code. Section V contains the conclusions.

II. Code Structure

Figure 1. Scheme of code.

The code has three modules: an Ion(I)-module to compute the production and transport of the heavy
species (ions and neutrals); an Electron(E)-module to solve the electron fluid; a quasi-neutral plasma is
assumed, and for the non-neutral sheaths at the boundaries a Sheath(S)-module is used to solve them.12,18

In case of HPT, an additional Wave(W)-module, which solves for the plasma-wave interaction, is added.
The transport block integrates I-module, E-module and S-module and it is coded in FORTRAN; and the
plasma-wave interaction block is just the W-module, which is coded in PYTHON. Both blocks are for now
independent subcodes that are called from a PYTHON main script.

The integration of the modules for HPT is illustrated in Fig. 1:

The plasma-wave interaction block (W-module) on the right takes as inputs the species densities and the
electron temperature given by the transport block on the left (I-module and E-module). As output,
it provides the deposited power density map. In the process, it computes also the wave-associated
electric and magnetic fields.

Inside the transport block, the I-module takes as inputs the electric potential and electron temperature
from E-module to compute heavy species densities and currents. The E-module uses the outputs from
the I-module and the W-module to compute its own outputs.

Inside the E-module there are two solvers: one for continuity and momentum equations (solving for
electric potential and electron currents) and another one for the energy and heat flux equations (solving
for electron temperature and heat flux). These solvers are run separately in a sequential way each time
E-module is called, i.e., one solver waits the other to finish to use its solutions as inputs.

2
The 36th International Electric Propulsion Conference, University of Vienna, Austria

September 15-20, 2019



In this scheme the S-module is not shown, it is coupled with E-module and allows to compute the electron
properties and electric potential at the boundaries.

III. Physical Models/Numerical Treatment

The physical models and the numerical algorithms used are shortly discussed. We will focus only on the
main difficulties of this code: the numerical treatment of the magnetized electron fluid in the E-module and
the modelling of the plasma-wave interaction in the W-module. More details about other aspects of the code
can be found in previous works.11,12,14,15,18

A. Plasma Transport

The fluid model for the electron transport is introduced. Recently, we have had advances in the numerical
treatment of the electron continuity and momentum system.15 The advances deal with algorithms that
further reduces the numerical diffusion apart from the usage of a MFAM; and which improves the accuracy in
the computation of the plasma properties at the boundaries, where a MFAM mesh present high irregularities.
Now, these algorithms have been implemented for the energy and heat flux system. These improvements in
the numerical resolution are presented here.

1. Current Continuity and Generalized Ohm’s Law

The continuity and momentum system has been discussed in previous works14,15 and it just briefly summa-
rized here. Lets ns, Zs and us be the density, charge number and velocity of the species s respectively. The
continuity equation for the electric current j is

∇ · j = 0, (1)

where j = ji + je, ji = e
∑
s 6=e Zsnsus is the ion current and je = −eneue the electron current. The

electron momentum is modeled with a diffusive model, the electron inertia is neglected and the collisions are
retained, and this allows to define a generalized Ohm’s law. The Ohm’s law projected in a reference frame
defined by the applied magnetic field B0 yields

j‖e = σe

[
1

ene

∂ (neTe)

∂1‖
− ∂φ

∂1‖

]
− j‖c, (2)

j⊥e =
σe

1 + χ2

[
1

ene

∂ (neTe)

∂1⊥
− ∂φ

∂1⊥

]
− j⊥c + jθcχ

1 + χ2
, (3)

jθe = −j⊥eχ− jθc. (4)

In these equations: 1‖ and 1⊥ are versors parallel and perpendicular (in the meridian plane) to B0 respec-
tively, and θ represents the azimuthal direction; φ is the electric potential, Te the electron temperature;
σe = e2ne/(meνe) is the current conductivity, with νe =

∑
s6=e νes the total electron collision frequency and

which is obtained by adding the frequencies νes (dependent on ns and Te) with other species s; χ = ωce/νe
is the Hall parameter, where ωce = eB0/me is the electron gyrofrequency; and there are the components of
jc = ene

∑
s6=e νes/νeus, an equivalent current from the heavy species. Notice that, in Eq. (2) σ‖ = σe is

the parallel conductivity and in Eq. (4) σ⊥ = σe/(1 +χ2) is the perpendicular one, for magnetized electrons
χ� 1 and then σ‖ � σ⊥ causing anisotropy.

In the parallel component of the Ohm’s law, due to the low collisionality (thus, high conductivity σe ∝
ν−1e ) of the plasma in electromagnetic thrusters, it happens that (j‖e + j‖c)/σe is small in the cases of
interest15 in Eq. (2) and the dominant terms are the pressure and potential gradients,

∂φ

∂1‖
≈ 1

ene

∂ (neTe)

∂1‖
�

j‖e + j‖c

σe
. (5)

Then the equation is ill-conditioned numerically when trying to solve for j‖e. The thermalized potential Φ,
which groups the dominant terms, is proposed as a solution to this problem in Ref. 15. However, in that
article a polytropic closure was assumed for Te and the definition of Φ is relied on the existence of a barotropy
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function. Under those conditions Φ is able to join totally the dominant terms in Eq. (2) as the gradient of
Φ. However, the barotropy function does not exist for the general case, once Te is obtained self-consistently
with the energy equation. The definition of Φ proposed here for the general case is

Φ = φ− Te
e

ln
ne
ne0

, (6)

with ne0 as a reference density, and Eq. (2) becomes

j‖e = σe

[
1/e

(
1− ln

ne
ne0

)
∂Te
∂l‖
− ∂Φ

∂l‖

]
− j‖c. (7)

There is a term ∝ ∂Te/∂l‖ remaining from pressure gradient, but it is known that also due to the low
collisionality, Te is nearly constant along B0 in electromagnetic thrusters,8,19,20 and that term is of the same
order as (j‖e + j‖c)/σe.

In this system the continuity equation is a conservation law for je and the Ohm’s law is a state equation
that relates je and Φ. In order to solve this system, je from the Ohm’s law is substituted in the conservation
equation. First Φ is computed, and after that je. The conservation equation is discretized and integrated
in each cell with a Finite Volume Method (FVM). For the the Ohm’s law, je is discretized at the cell face
centers, their derivatives of Φ are set as a function of its discretized values at the cell centers through gradient
reconstruction. In irregular meshes as a MFAM usually the Weight Least Square Method (WLSM), based
on Taylor expansions, is one of the most extended methods to perform gradien reconstruction,21,22 but it
mixes the anisotropic properties between different directions to B0, which causes numerical diffusion. In
Ref. 15 it is demonstrated that the better way to handle the derivatives of Φ is to use a Finite Difference
Method (FDM). FDM is applied whenever possible, but it cannot be used for faces close to the contour
due to the high irregularity of boundary cells, and WLSM is used there instead. In addition, as all the cell
centers are inside the domain we need to complete the solution of Φ with its values the boundaries. For that
a WLSM-based algorithm is applied in Ref. 15 and self-consistently values with the boundary conditions are
obtained.

2. Energy conservation and Generalized Fourier’s Law

The electron temperature (or pressure) and heat flux are obtained by solving the system composed of an
energy conservation law and a closure equation for the heat flux. Regarding the energy conservation the
classic internal energy equation is used. Then, for the heat flux a diffusive type model from Ref. 23, similar
to the Ohm’s law, is considered.

The internal energy equation is

∂

∂t

(
3

2
neTe

)
+∇ ·

(
5

2
neTeue + qe

)
= ue · ∇pe + σ−1e je · (je + jc) +Qe −

1

2
meu

2
eSe +Qa. (8)

In this equation qe is the heat flux, Se the plasma production rate; Qe contains the effects due to the inelastic
collisions, whose contributions are

Qe = Qion +Qexc, (9)

where Qion and Qexc correspond to ionization and excitation, respectively; and Qa is the power deposition
that comes from plasma-wave interaction.

The model for qe is

0 = −5pe
2e
∇Te − qe ×B −

5peσ
−1
e

2
(je + jc)− eneσ−1e qe, (10)

which is a generalized Fourier’s law. Each of its component in the magnetic frame is given by

q‖e =
σe
ene

[
−5pe

2e

∂Te
∂l‖
− 5peσ

−1
e

2

(
j‖e + j‖c

)]
, (11)

q⊥e =
σe/(ene)

χ2 + 1

[
−5pe

2e

∂Te
∂l⊥
− 5peσ

−1
e

2
(j⊥e + j⊥c)− χ

5peσ
−1
e

2
(jθe + jθc)

]
, (12)
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and

qθe = −χq⊥e −
5pe

2ene
(jθe + jθc) . (13)

Here, lets take k‖ = σe/(ene) and k⊥ = k‖/(χ
2 + 1) as the parallel and perpendicular heat conductivities

respectively, notice that in a similar way as for current, here k‖ � k⊥. Grouping all the terms this law can
be written in a compact way as

qe = k ·
[
−5pe

2e
∇Te −

5peσ
−1
e

2
(je + jc)

]
, (14)

where k is the heat conductivity tensor.
This system is analogous to the continuity and momentum one. The Fourier’s law is also a state equation

and the energy equation is a scalar conservation law but with a temporal character. Here, Te is the equivalent
to Φ and qe to je. Thus, in a similar way qe is substituted in Eq. (8) with Eq. (14) to compute first Te,
once Te is obtained the computation of qe would be immediate. The algorithms used to solve this system is
inherited from Ref. 15 ans is described below. The treatment of solution for the cells and for the boundaries
are discussed separately.

Numerical Implementation-Inner Solution The temporal part of Eq. (8) is discretized with a semi-
implicit Euler scheme of constant time step ∆t. [In order to explain the numerical implementation, pe is
used instead of Te to obtain more compact equations.] All the explicit pe at its RHS is defined for the current
time step k+1, except the nonlinear term in qe from the temperature gradient, in that case the proportional
pe is taken at the previous time step k. This yields

3

2

pe|k+1 − pe|k

∆t
= −∇ ·

(
− 5pe

2ene

∣∣∣∣k+1

je|k + qe|k+1

)
− je
ene

∣∣∣∣k · ∇pe|k+1
+ Q′e|

k
+ Qa|k , (15)

where

qe|k+1
= −

(
5pe
2e

k

)k
· ∇ (pe/ne)|k+1 − 5pe

2ene

∣∣∣∣k+1

(eneσ
−1
e )
∣∣k k∣∣∣k · (je + jc)|k (16)

and

Q′e = σ−1e je · (je + jc) +Qe −
1

2
me

(
je
ene

)2

Se. (17)

Then a FVM is applied to Eq. (15) for each cell l, it yields

3

2

pe|k+1
l − pe|kl

∆t
Vl =

∑
m

(
5pe

2ene

∣∣∣∣k+1

je|k − qe|k+1

)∣∣∣∣∣
m

Sm · nm+

+

(
− je
ene

∣∣∣∣k · ∇pe|k+1
+ Q′e|

k
+ Qa|k

)∣∣∣∣∣
l

Vl,

(18)

Vl is the volume of the cell, m represent its faces, and Sm and nm are the faces area and outward normal
versor. For a contour face m∗, the known qe · n|m∗ from boundary condition is imposed and the value from
the step k is used to avoid the nonlinear relations from the sheath models at material walls.

In Eq. (18) the derivatives of pe at a element l and face m are written in terms of its values at cell
centers. Applying a gradient reconstruction method (GRM) it yields

∂pe
∂l

∣∣∣∣
l

=
∑
l′

gll′ pe|l′ (19)

and
∂pe
∂l

∣∣∣∣
m

=
∑
l

gml pe|l . (20)

Here gll′ and gml are geometric coefficients that depend only on the mesh, l a the unit vector for a generic
direction and l′ and l represent surrounding cells. In a similar way to Ref. 15 FDM is used in all the inner
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faces except those close to the boundaries, where WLSM is applied. Regarding pe at m an interpolation
scheme is used obtaining

pe|m =
∑
l

g′ml pe|l , (21)

which is only done for inner faces. Plugging these GRM and interpolation relations into Eq. (18), a linear

system is obtained for pe|k+1
at the cells (number of equations equal to that of cells). However, the unknowns

are pe|k+1
at the cells and boundary faces. Thus, additional equations for pe|k+1

m∗ are needed.

Numerical Implementation-Boundary Solution The boundary algorithm for Φ in Ref. 15 is applied
for pe. In this algorithm, a WLSM is introduced, which for a boundary face m∗ includes pe|m∗ (apart from
pe|l) as well and it has the form

∂pe
∂l

∣∣∣∣
m∗

=
∑
l

gm∗l pe|l + gm∗ pe|m∗ . (22)

Then the electron heat flux from Eq. (16) at face m∗ is forced to be equal to the value given by the boundary
condition, it yields

5

2e

[
pe|km∗ gm∗ + (eneσ

−1
e )
∣∣k
m∗

(je + jc)|km∗ · n
′
m∗

] pe
ne

∣∣∣∣k+1

m∗
+

5

2e
pe|km∗

∑
l

gm∗l
pe
ne

∣∣∣∣k+1

l

=

− (qe · n)|km∗

|k
T
∣∣∣∣k
m∗
· nm∗ |

,
(23)

where

n′m∗ =

k
T
∣∣∣∣k
m∗
· nm∗

|k
T
∣∣∣∣k
m∗
· nm∗ |

, (24)

Equation (22) has been introduced, and the GRM coefficients gm∗ and gm∗l are for the derivative along n′m.

Concatenating the equation for each boundary face we obtain a linear system for pe|k+1
m∗ .

Numerical Implementation-Complete System The system in Eq. (18) has to solved together with
Eq. (23), grouping them the final system has the form

A

[
{pe|k+1

l }
{pe|k+1

m∗ }

]
= b, (25)

where A contains the physical and geometric coefficients proportional to pe|k+1
and b groups the terms at

step k and the boundary condition for qe.

B. Plasma-Wave Interaction

The following full-wave Finite Difference method is based on the model of Tian17 for the study of elec-
tromagnetic wave propagation in cold plasmas. The mathematical model, numerical implementation and
application for the simulation of a Helicon thruster are presented.

1. Wave propagation model

Fourier analysis is used to obtain the frequency domain form of Maxwell’s equations. The time-harmonic
electric field vector for a monochromatic wave with a given excitation angular frequency ω is shown in Eq.
(26). Note that the term Ê multiplying the exponential factor is a complex amplitude containing information
both about the magnitude and phase of the time varying field. The electric and magnetic fields and the
current density vector can be expressed in complex exponential form, not only in time but in space as well.
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By virtue of linearity, the solution to a full electromagnetic propagation problem with an excitation frequency
ω and different azimuthal modes m is the superposition of many terms of the form

E(r, t) = <[Ê(r, ω) exp(−iωt)] = <[Ẽ(z, r,m, ω) exp(−iωt+ imθ)]. (26)

Projecting into cylindrical coordinates with r denoting the radial direction and z the axial coordinate, the
spatial dependence has been reduced by such expansion in the azimuthal direction θ. Field continuity is
imposed by satisfying the condition that the azimuthal wave number belongs to the set of integer numbers
m ∈ Z.

In order to discretize Maxwell equations into the grid shown in Fig. 3, it is helpful to use the first order
form of Faraday’s and Ampere’s laws in integral form,

ω
∫
iB̃ · ds−

∮
Ẽ · dl = 0

µ0ω
∫
iD̃ · ds+

∮
B̃ · dl = µ0

∫
̃a · ds

(27)

where ε0 and µ0 are the vacuum permittivity and permeability; and c =
√

1/(ε0µ0) is the speed of light in

vacuum. The displacement field D̃ = ε0 ¯̄κ · Ẽ is introduced as the ‘effective’ propagating field within certain
material and matches the electric field in vacuum. The dielectric tensor ¯̄κ can be derived from the plasma
current for a cold and magnetized plasma.24 Notice that the effect of the plasma current has been included
in the dielectric tensor and only the antenna current density ̃a appears explicitly in the expression (the total
current is ̃p + ̃a).

The expression found in Eq. (27) relies on the fact that, neglecting thermal motion in the momentum
equation for each species s in the plasma and under the influence of an externally applied magnetic field B0

(different from the wave magnetic field), it is possible to find a linear relation between the species current
density and the electric field,

̃s = ¯̄σs · Ẽ, (28)

where ¯̄σs is the conductivity tensor for s. After which ¯̄κ is derived as

¯̄κ(ω) = ¯̄1 +
∑
s

i

ωε0
¯̄σs. (29)

Selecting a Cartesian coordinate system with the static magnetic field directed along the z-direction B0 =
B01z, the dielectric tensor takes the form24

¯̄κ =

 S −iD 0

iD S 0

0 0 P

 (30)

with:

S ≡ 1

2
(R+ L) (31)

D ≡ 1

2
(R− L) (32)

P ≡ 1−
∑
s

ω2
ps

ω(ω + iνm)
(33)

R ≡ 1 +
∑
s

χ−s = 1−
∑
s

ω2
ps

ω(ω + iνm + ωcs)
(34)

L ≡ 1 +
∑
s

χ+
s = 1−

∑
s

ω2
ps

ω(ω + iνm − ωcs)
(35)

and:

ωcs =
ZseB0

ms
, ω2

ps =
ns(Zse)

2

msε0
. (36)
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In these expressions ωcs is the species cyclotron frequency, ωps is the plasma frequency, and ms is the
particle’s mass. Finally, νm is the effective momentum loss frequency due to collisions.

To close the problem, a suitable set of boundary conditions must be enforced. For metallic walls Perfect
Electric Conductor (PEC) BCs are applied in all the boundaries besides the axis by imposing a null tangential
field Ẽ ×n = 0. The staggered grid in Fig. 3 provides an easy implementation because the tangential fields
lay precisely on the boundaries and, thus, the condition can be simply included as additional equations in the
fully discretized system. When it comes to the axis, the application of BCs turns out to be more convoluted.
The following conditions should be met to prevent the fields going to infinity and ensure continuity25 (similar
expressions are found for B),

Ẽ(0)
r = Ẽ

(0)
θ = 0,

Ẽ(±1)
r = ∓iẼ(±1)

θ , Ẽ(±1)
z = 0,

Ẽ(m)
r = Ẽ

(m)
θ = Ẽ(m)

z = 0 |m| > 1.

(37)

2. Antenna modelling

Helical antennas have proven to deliver a good performance in terms of power deposition into the plasma.26

This section is devoted to the modelling of those antennas for their application in the wave module.

Figure 2. Nagoya III and half turn helical antenna27,28

For an antenna of length la, centered around ra and having h ∈ R turns per loop, the ratio of axial to
total current in the central helix is [(2πhr/la)2 + 1]−1/2. The water-bag function is defined to truncate the
antenna in the axial direction,

G (z; z1, z2) = H (z − z1)−H (z − z2) =

{
1, z1 < z < z2

0, otherwise
, (38)

where H(z − z0) is the Heaviside unit step function and z1 and z2 are the axial coordinates of the antenna
ends. Using the above equations, the following expression can be found for the axial current density in any
antenna of the helical family

jza(z, r, θ) =
IaF (r)

r
√

(2πhr/la)2 + 1
G(z; z1, z2)

(
δ(θ − 2πh[z − z1]

la
)− δ(θ − π − 2πh[z − z2]

la
)

)
. (39)

In the azimuthal direction, besides the central helix, the two lateral loops must be added

jθa(z, r, θ) = IaF (r)

[
G(z; z1, z2) 2πh

la
√

(2πhr/la)
2+1

(
δ(θ − 2πh[z−z1]

la
)− δ(θ − π − 2πh[z−z2]

la
)
)

+

+ 1
2δ (z − z1) [G(θ; 0, π)−G(θ;π, 2π)]

− 1
2δ(z − z2)[G(θ; 2πh, 2πh+ π)−G(θ; 2πh+ π, 2πh+ 2π)]

]
,

(40)

such that
∫ rw
0

F (r)dr = 1, with rw being the maximum radius of the rectangular domain. This function is
used to smooth the profile in the radial direction either for numerical reasons or to simulate an antenna of
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some characteristic thickness dt, for an infinitely fine antenna we have F (r) = δ(r − ra). For the implemen-
tation into the 2D axisymmetric code, it is neccesary to perform an expansion in Fourier series along the θ
direction

f(θ) =

∞∑
m=−∞

f (m)eimθ, f (m) =
1

2π

∫ 2π

0

f(θ)e−imθdθ. (41)

The Fourier components are

j(m)
za (z, r) =

IaF (r)(1− e−imπ)

r
√

(2πhr/la)2 + 1

[
G(z; z1, z2)

e−2imπh[z−z1]/la

2π

]
, (42)

j
(m)
θa (z, r) = IaF (r)(1−e−imπ)

[
G(z; z1, z2)

he−2imπh[z−z1]/la

la
√

(2πhr/la)2 + 1
− 1

2π
δ (z − z1)+

1

2π
δ (z − z2) e−2imhπ

]
. (43)

Notice that, due to the presence of (1− e−imπ), the current vanishes for even modes while it doubles for odd
m.

In the case of a Nagoya III antenna,17 which is used below for a simulation case, the axial current density
in Eq. (42) simplifies with h=0 yielding

j
(m)
za (z, r) =

Ia
πr
G(z; z1, z2)F (r)

if m odd ; jz = 0 otherwise,
(44)

where a normalized Gaussian function is used to smooth the r profile, and taking dt as the characteristic
thickness of the wire one has

F (r) = w−1 exp
(
− (r−ra)2

d2t

)
with w =

∫ rw
0

exp
(
− (r−ra)2

d2t

)
dr = 1

2

√
πdt

[
erf
(
ra
dt

)
− erf

(
ra−rw
dt

)]
.

(45)

The azimuthal current density is derived from the axial profile so as to satisfy conservation of charge∇·ja = 0,

taking j
(m)
ra = 0 this reads

j
(m)
θa = i

r

m

∂j
(m)
za

∂z
. (46)

Previous work26 has shown that the mode m = 1 accounts for up to 98% of the plasma resistivity when using
Nagoya III antenna. Therefore, the simulation of the next section is run only for this particular azimuthal
mode.

3. Numerical implementation

The numerical solution of the wave problem is obtained using a Finite Difference method, in particular, a
modification of the well-known Yee staggered grid method to account for non-isotropic linear materials such
as a cold magnetized plasma. Unlike the original leapfrog time marching Yee method, Maxwell’s equations
are solved in the frequency domain on account of the shortest wave propagation characteristic time when
compared to the electron thermal velocity in the transport problem.

9
The 36th International Electric Propulsion Conference, University of Vienna, Austria

September 15-20, 2019



Figure 3. 2D staggered grid and electromagnetic fields. Each cell comprises a central node and four border
nodes. Eθ is located in the blue X, Ez and Br in the red circle, Er and Bz in the purple square and finally Bθ
in the green triangle.

The use of the staggered grid with alternating fields for the nodes inside a cell allows for an easy im-
plementation of the surface and line integrals. The difference in the discretization with the vacuum Yee
method arises from the need to estimate the value of the electric field in certain nodes where it is not solved
for in the assembled system of equations. This requirement comes from the dielectric tensor times electric
field product in the computation of the displacement field. A straightforward solution is to perform simple
interpolations using nearby nodes where the electric field unknowns are placed. By discretizing Eq. (27)
into the grid shown in Fig. 3, Eqs. (47) and (48) are found for each cell (iz, ir) in the domain as

iωρBz (iz, ir) dr + imEr (iz, ir) dr − ρEθ (iz, ir + 1) + ρEθ (iz, ir) = 0

iωρBr (iz, ir) dz − imEz (iz, ir) dz + ρEθ (iz + 1, ir)− ρEθ (iz, ir) = 0

iωBθ (iz, ir) dzdr − Ez (iz, ir) dz − Er (iz + 1, ir) dr + Ez (iz, ir + 1) dz + Er (iz, ir) dr = 0,

(47)

ω
c2

[
iρκzr

Er(iz,ir)+Er(iz+1,ir)+Er(iz+1,ir−1)+Er(iz,ir−1)
4 + iρκrθ

Eθ(iz+1,ir)+Eθ(iz,ir)
2 + iρκzzEz (iz, ir)

]
∆r

−imBr (iz, ir) ∆r − ρBθ (iz, ir − 1) + ρBθ (iz, ir) = µ0ρjar∆r

ω
c2

[
iρrrrEr (iz, ir) + iρκrθ

Eθ(iz,ir+1)+Eθ(iz,ir)
2 + iρκrz

Ez(iz,ir)+Ez(iz−1,ir)+Ez(iz−1,ir+1)+Ez(iz,ir+1)
4

]
∆z

+imBz (iz, ir) ∆z + ρBθ (iz − 1, ir)− ρBθ (iz, ir) = µ0ρjar∆z

ω
c2

[
iκθr

Er(iz,ir)+Er(iz,ir−1)
2 + iκθθEθ (iz, ir) + iκθz

Ez(iz,ir)+Ez(iz−1,ir)
2

]
∆z∆r

−Bz (iz, ir) ∆z +Bz (iz, ir − 1) ∆z +Br (iz, ir) ∆r −Br (iz − 1, ir) ∆r = µ0jaθ∆z∆r.
(48)

The tildes have been dropped for simplicity in the notation. ρ denotes the radial coordinate r of the central
node for the cell (iz, ir) and ∆r and∆z are the cell sides’ lengths. The set of 6×nz×nr equations (including
boundary conditions) is assembled into the usual linear system form Ax = b, where A is the matrix of
coefficients and b is the forcing vector (antenna currents). A direct solver is applied to obtain the electric
and magnetic field components contained in the solution vector x. Averaging during a whole wave cycle

T = 2π/ω, the power deposited into the plasma reads Qa = R

(
j∗p ·E

2

)
, then the total power absorption

can be computed as

Pa = R

(∫
Vp

j∗p ·E
2

dVp

)
, (49)
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being Vp the volume comprising the plasma region.

IV. Results

A. Simulation Set-up

The code is used to run a simulation for a HPT thruster sketched in Fig. 4, which is similar in configuration
to the prototype HPT05.5,6 The summary of the settings can be found in Table 1. The thruster has a
vessel with a length lc=13cm and radius rc=1cm. The walls are made of ceramic material (W2) and there
is an injector at the back surface (W1), which starts from r=0cm and has an extension of rinj=0.2cm and
delivers Xenon at a mass flow rate of ṁ =1mg/s. From z=13cm we have the truncated plume with a free
loss surface (W3). The illustrated magnetic field is generated with a coil, which works as the magnetic nozzle
in the plume. The antenna shown is a Nagoya III,17 with a radius ra=1.2cm, length la=7.5cm, thickness
dt=0.05cm and a central position za=5.25cm. The antenna operates at f=50MHz and its current is adjusted
to have a constant total power deposited to the plasma of Pa=300W.

𝑙"

𝑟"

𝑟$
𝑙"

𝑧$

𝑑'

𝑟()*

Figure 4. Scheme of the HPT thruster simulated.

Regarding the BCs, some of the BCs for the W-module do not exactly match those used for the transport.
The dielectric material of the HPT source has a small effect on the fields propagation and it is ignored for the
present simulations. Moreover, the wavelength in vacuum is several meters long, plasma currents are excited
inductively and distinguishable waves only develop inside the plasma region. Additionally, the truncation
of the domain is carried out using Perfect Electric Conductor (PEC) BCs (except for the axis) accounting
for metallic walls. This is a good first approximation to the actual laboratory case taking into account that,
inside the vacuum chamber, there is not actual free space radiation.

B. Discharge 2D Profiles

Figure 5 shows the 2D maps for properties in the plasma discharge. Subplots (a), (b), (c), (d), (e), (f), (h)
and (i) are the solutions from the transport block while (g), (j), (k) and (l) are from the W-module.

Studying the results it is found that:

The plasma density [subplot (b)] presents a maximum on the axis and around znmax=3.2cm. Then
it decays due to plasma recombination at the walls and expansion in the plume. The large magnetic
field around z=13cm (B0 about 1500G) makes ne to decay nearly 2 order of magnitude and a good
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Parameter

Chamber length lc 13 cm

Chamber radius rc 1 cm

Mass flow ṁ 1mg/s

Propellant type Xenon

Antenna type Nagoya III

Antenna frequency f 50 MHz

Antenna loop radius ra 1.2 cm

Antenna length la 7.5 cm

Antenna central position za 5.25 cm

Antenna thickness dt 0.05 cm

Power deposition Pa 300 W

Table 1. Simulation Parameters

confinement is achieved in that region. However, the problem is upstream from z=0cm to znmax , where
B0 has decay 2-3 times (from 1500G) and ne is practically of same order as its maximum value.

Subplot (c) is the neutral density, the depletion of neutrals due to ionization can be observed. Besides,
at the plume it reaches much lower magnitudes (1016/m3) compared with the plasma (1018/m3), which
means that nearly all the injected propellant is ionized.

Subplot (e) is the ion longitudinal current density. [The longitudinal current density of a species s is
defined as j

′

s = js − jθslθ.] From its analysis, conclusions consistent with those from ne are obtained.
The streamlines are born from the axial position of maximum ne. There are virtually no ions going
to the lateral wall for z > znmax while the losses are important for z < znmax (|j′i | is comparable to its

value at the chamber exit). Moreover, it is observed that |j′i | is relevant at the chamber back surface
as well. One could know the importance of these losses by comparing their areas with the chamber
exit area. For the back surface the ratio is 1, and for the portion of lateral wall up to znmax the area
is 6.4 times larger, and thus it is the main contribution for the losses.

Subplot (h) illustrates the electron temperature. In regions of strong magnetization, the isolines of Te
follows the magnetic field lines due to the high heat conductivity along them.19,20 Te is below 3.5eV
in most of the chamber, which results in important losses in excitation of neutrals. However, it is
maximum (up to 6.8eV) for the field lines close to the lateral wall. The explanation for this behaviour
is, first, there are important power deposition [subplot (g)] on those lines and, second, the low plasma
density in that region due to confinement.

The tendency of the electric potential [subplot (a)] is similar to that for ne since an approximate
Boltzmann-type relation exits between them.15 There is an interesting feature near (z, r) = (3.5, 0.75)
cm: φ presents a bump, it increases with r and then it decays toward the wall; this is happens in
strongly magnetized plasma, and the effect tries to regulate the flow of ions reaching the wall so that
it equalizes the one for electrons.29,30

Subplot (d) shows the ion longitudinal velocity. The trajectory of the ions follows the profile of φ and
their acceleration in the plume (magnetic nozzle) is observed, which produces the thrust.

Subplot (f) and (i) show the electron current density, the longitudinal component and the azimuthal
one, respectively. Subplot (f) suggests that j

′

e is similar to j
′

i but not completely equal. Thus, local
longitudinal electric currents are generated despite the free current condition downstream, something
also observed in previous works.14,15 Subplot (i) illustrates large azimuthal currents, these currents
are responsible for the magnetic confinement30 inside the chamber and for the generation of thrust in
the plume.31

12
The 36th International Electric Propulsion Conference, University of Vienna, Austria

September 15-20, 2019



The wave solution [subplots (g), (j), (k) and (l)] shows that, for the given plasma density and magnetic
field profiles, the thruster falls in an operation regime where only the right hand polarized wave
(whistler wave) propagates, being the left hand polarized mode evanescence. Looking at the fields,
two characteristic wave-forms are identified, note that these are stationary wave patterns formed due
to reflections in the metallic walls (boundary conditions of the W-module). In the upper right part of
the plasma domain and visible in the three components of the field, the so called Trivelpiece-Gould
(TG) mode appears. This electrostatic wave propagates perpendicular to the magnetic field lines, and
is highly damped near the plasma boundary. On the other hand, close to the axis, longer wave lengths
are observed in the azimuthal field, which correspond to the Helicon mode and propagate parallel to
the applied magnetic field.

Therefore, it is possible to classify the present propagation into the Double Wave Regime (DWR).26

However, observe that both waves are indeed the same RHP wave, with high perpendicular wave
number (k⊥) and low k⊥, respectively. As studied by Tian, Ahedo and Navarro,32 this regime exists
for 2ω/ωce < k‖de <

√
1/ (ωce/ω − 1), where k‖ is the wavenumber in the direction parallel to the

magnetic field.

C. Performances

Table 2 contains the performances of the thruster. In this table ηu and ηprod are the propellant utilization
and production efficiency respectively, which are defined as

ηu =
ṁi,W3

ṁ
and ηprod =

ṁi,W3

ṁi,total
,

where ṁi,W3 is the ion mass flow through surface W3 and ṁi,total through all the surfaces W1+W2+W3.
The terms εwall, εinel and ηene comes from the power balance, under steady conditions the total energy
equation for all the species integrated over the whole domain yields

Pa = Pwall + PW3 + Pion + Pexc.

Here Pwall is the total energy flux of all species through W1+W2, and PW3 is the useful one through W3,
and Pion and Pexc are the power spent in ionization and excitation respectively. Now, εwall, εinel and ηene
are defined as

εwall =
Pwall
Pa

, εinel =
Pion + Pexc

Pa
and ηene =

PW3

Pa
.

Then there is the plume efficiency, ηplu, that measures the performance of the magnetic nozzle, defined as
ratio between the axial and total ion energy flows through W3. Finally, F correspond to the thrust generated,
and ηF is the thrust efficiency defined as

ηF =
F 2

2ṁPa
,

and which can be estimated from the partial efficiencies as ηF ≈ ηuηeneηplu.
In the table it is seen that the propellant utilization ηu is a 81%, which means a good ionization process,

something already suggested by the previous analysis on the nn-2D map. However, the production efficiency
ηprod is only a 13%, and the plasma flow through W3 is small compare with the flow lost through the walls.
Indeed, the ratio ηu/ηprod = 6.23 indicates that the propellant is ionized about 6 times. This is mainly due
the recombination at that portion of the lateral wall up to znmax , as seen when discussing Fig. 5 (e). In order
to mitigate this problem, one could set a magnetic topology that is more aligned with the lateral wall near
that region and with a higher strength. Another solution could be just to move the back surface forward
until zmax.

Looking at the power balance, ηene is only a 4%. The rest is lost in wall recombination (εwall=31%)
and inelastic collisions (εinel=65%). Inside εinel, the excitation is a 46%, and it is the main sink of power.
This problem with excitation is due to the temperature profile analyzed in Fig. 4 (h). The solution for
this problem is to change the antenna operation, for which parametric analysis is needed, so that the power
deposition is concentrated close to the axis.

The plume efficiency ηplu is a 87% with a plume divergence semi-angle of arccos
√
ηplu = 21◦. Thus, the

magnetic nozzle is operating properly. Despite that, due to the inefficiencies in the plasma generation inside
the chamber the overall efficiency ηF is only a 1.9%.

13
The 36th International Electric Propulsion Conference, University of Vienna, Austria

September 15-20, 2019



a) b) c)

d) e) f)

g) h) i)

j) k) l)

Figure 5. 2D maps of the plasma properties.

F [mN ] ηu ηene ηplu ηF ηprod εinel εwall

3.2 0.81 0.04 0.87 0.019 0.13 0.65=0.46 + 0.19 0.31

Table 2. Performance indicators. The two terms in the sums of the the column εinel are the contributions of
excitation and ionization (from left to the right).
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V. Conclusions

A 2D asymmetric code for full plasma discharge simulations in HPTs has been introduced. This code has
a block for the plasma transport, which follows a hybrid approach (fluid electrons and particles for heavy
species). The main challenge of this approach is the numerical treatment for the anisotropic character of the
magnetized electron fluid. Novel numerical advances in relation to the E-module have been briefly explained
and described here. In order to handle the anisotropy, a MFAM mesh is considered and FDM is used for
gradient reconstruction to minimize numerical diffusion. The use of a MFAM results in highly irregular
cells close to the boundaries, and where complex algorithms based WLSM need to be applied to obtain the
plasma properties. Coupled to the plasma transport block, there is a separate module that updates the power
deposition map. The plasma-wave interaction physics is also complex to reproduce, and the development of
a model that assumes a cold plasma and which is based on a frequency domain Finite Difference method
has been detailed as well.

The code has been used to simulate a particular HPT thruster. Important conclusions have been obtained
in relation to its design parameters such as its magnetic topology, chamber length, and antenna operation.
These conclusions could help in the improvement of its performances. Moreover, as this thruster is quite
similar to the prototype HPT05, it is clear the potential direct application the code has for a real case.
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