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A kinetic electron model and a fluid ion model are combined to describe the 2D plasma
expansion in an axisymmetric magnetic nozzle in the fully-magnetized, collisionless limit.
Electrons can be separated into free, reflected, and doubly-trapped populations, and are
seen to develop anisotropy and to cool down in a non-trivial way downstream. A polytropic
electron model with same asymptotic electric potential value, φ8, misses these kinetic
aspects and fails to approximate the behavior of the electric potential and the average
electron temperature. These differences are important in determining the performance of
the device.

I. Introduction

Magnetic nozzles1–3 (MNs) act as the main plasma acceleration stage of electrodeless thrusters such
as the helicon plasma thruster (HPT) and the electron-cyclotron-resonance thruster (ECRT), but is it

also an essential part of the applied-field magnetoplasmadynamic thruster (AFMPDT), the variable specific
impulse magnetoplasma rocket (VASIMR), and other devices.4 Understanding the plasma expansion in the
guiding magnetic field of the MN is crucial to develop predictive models of the performance of these thrusters,
as well as to determine the electric potential map and assess the energy and amount of plasma backflow to
the spacecraft.

Figure 1: Sketch of a MN and typical trajectories of reflected, doubly-trapped, free electrons, and ions. The
electrostatic field ´∇φ developed in the plasma accelerates ions downstream and confines most electrons.
This, combined with the magnetic mirror effect on individual particles due to the diverging magnetic field
B, gives rise to the existence of the different electron subpopulations.
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The focus of this work is on near-collisionless MN flows composed of hot, magnetized electrons and
comparatively cold ions, which are relevant to (at least) HPTs and ECRTs. These flows are characterized
by the set-up of a monotonically decreasing electrostatic field ´∇φ in the plasma that accelerates ions
downstream and confines most of the electrons, except for the most energetic ones (see figure 1). This
field maintains the plasma quasineutrality and converts the electron internal energy into directed ion kinetic
energy. The electric potential map φprq depends strongly on the electron thermodynamics.5 Given the
low number of collisions in the plasma, electrons are typically away from local thermodynamic equilibrium
(LTE), which hinders an accurate representation of the electron species by means of otherwise convenient
fluid models, since a consistent closure relation (CR) for the fluid equation hierarchy requires to account for
the full kinetic electron response. Indeed, in the collisionless limit, electrons develop temperature anisotropy,
and cool down in a non-trivial way due to the existence of effective potential barriers in phase space due to
the interplay between electrostatic forces and magnetic mirror forces that creates empty regions and isolated,
partially-populated regions in the electron velocity distribution function (EVDF).6–9 The resulting electron
behavior is far from the commonly-used isothermal or polytropic models, whose theoretical justification fails
in a collisionless plasma. Accounting for the correct electron response is paramount in the study of the
plasma expansion and the determination of the propulsive performance of the MN.

This paper analyzes the self-consistent cold-ion and hot-electron expansion in a 2D axisymmetric MN
in the collisionless and full-magnetization limit, taking into account the kinetic electron response. The
goal is to investigate the 2D kinetic behavior of the electrons, and the consequences this behavior has
on the applicability of fluid electron models. The main questions to be answered are to what extent a
polytropic model is a valid approximation of the kinetic model, and how important are 2D geometry effects
in this validity. The problem is approached by combining two previously presented models, AKILES10

and FUMAGNO,11 which have both been open-sourced and are available to the community.12,13 AKILES
is a 1D kinetic plume code valid in the unmagnetized limit, which is adapted here to the fully-magnetized
electron limit consistent with the formulation of.6 It is shown that the electron equations are mathematically
analogous in the two limits due to the existence of adiabatic invariants that play a similar role in either case.
FUMAGNO is a 2D and 3D two-fluid code that describes the fully-magnetized expansion of a plasma in
a magnetic nozzle. The code is extended here to accept the tabular kinetic results from AKILES, to yield
the full 2D plasma response using an iterative approach.14 This enables analyzing the kinetic cooling and
anisotropization of electrons in the 2D domain, and extracting conclusions on the operation of the device.
The fluid-kinetic results are compared against a basic polytropic electron model to show the main differences.

The rest of this contribution is organized as follows. Section II summarizes the combined 2D fluid-kinetic
MN model, and describes the analogy between the fully-magnetized and unmagnetized paraxial electron
kinetic models. Section III presents and discusses the simulation results. Finally, conclusions are gathered
in Section IV. Advanced kinetic studies of the electron population in a MN are presented in a companion
paper, reference 15.

II. Fluid-kinetic plasma model

The plasma/MN model presented here consists of a fluid ion model coupled with a kinetic electron model.
The diverging, axisymmetric applied magnetic field B is assumed known, while the self-consistent electric
potential map φpz, rq and the plasma properties are found iteratively by combining both models.

A. Fluid ion model

The fully-magnetized, collisionless plasma model of reference 11 is adapted here to solve the ion flow in the
MN. A full derivation of the model equations can be found in that reference. In the following, e,me, Te,mi

are the electron charge, mass, and temperature, and the ion mass, while B is the magnetic field strength and
R is the characteristic radius of the plasma. We shall call s the meridional coordinate along each magnetic
tube or line. A subindex “0” denotes the value of a variable on a given magnetic line at the magnetic throat,
e.g. B0. These values therefore depend on the radius r0 of that magnetic line at the throat. A double
subindex “00” denotes the value at the origin of coordinates, i.e., at the center of the magnetic throat.

In the collisionless, steady-state, fully-magnetized limit, the ion gyrofrequency satisfies11,16

ΩiR{cs “ eBR{
a

Temi " 1, (1)
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and all drift velocities are much smaller than the sonic velocity cs “
a

Te{mi, so, to first approximation, the
ion fluid velocity is parallel to the applied magnetic field ui “ ui1‖. The cold, singly-charged ions follow the
magnetic tubes, along which their fluid equations take the simple integral form:

niui{B “ Gipψq;
1

2
miu

2
i ` eφ “ Hipψq. (2)

where Gipψq and Hipψq are integration constants on each magnetic tube, labeled by the streamfunction
ψ, and all other symbols are conventional. Once boundary conditions ni “ ni0, ui “ ui0 are given at the
magnetic throat s “ 0 for each magnetic tube, these expressions suffice to determine the ion properties
ni and ui as a function of Bpsq{B0, the local magnetic field strength normalized with its value at s “ 0,
B0 “ Bp0q.

B. Kinetic electron model

The reader is directed to references 6 and 10 for a full account of the 1D kinetic electron model in the
magnetized and the unmagnetized limits. Below, only a summary of the main aspects of the model and its
generalization to 2D are given for self-completeness. Appendix A presents the analogies between the fully
unmagnetized and fully magnetized models of these references.

Consider the steady-state, collisionless electron flow in a 2D, axisymmetric, slowly diverging MN. In the
limit of small electron Larmor radius `e{R “

?
Teme{peBRq ! 1 electrons are well-magnetized and all drift

velocities are small compared to the thermal velocity (note that this condition is automatically satisfied
if (1) is true). Then, to first approximation the electron macroscopic velocity is parallel to the magnetic
field, ue “ ue1‖, and in the collisionless limit, electrons remain on their respective magnetic tubes. On
each magnetic tube, the distribution functions of down-marching and up-marching electrons, f`e and f´e ,
are assumed to be uniform in the gyrophase angle α and the azimuthal angle θ, and to depend only on the
coordinate s along the magnetic tube, the mechanical energy E “ mepv

2
‖ ` v2

Kq{2 ´ eφ, and the magnetic

moment µ “ mev
2
K{p2Bq,

f`e “ f`e ps, E, µq; f´e “ f´e ps, E, µq. (3)

Mechanical energy E is a conserved quantity of electron motion, and µ is an adiabatic invariant that can be
considered conserved in gyro-average to second order17 in ε “ `e|B lnB{Bs| ! 1. Hence, the kinetic equation
for fe can be written in first approximation as

v‖
Bfe
Bs

“ 0. (4)

This equation states that f`e and f´e are propagated as constants along s for each E,µ, as long as v‖ ‰ 0.
The condition v‖ “ 0 indicates the turning points for the electron trajectories. Expressed in terms of E,µ
and the electric potential and the magnetic field strength along the magnetic tube, φpsq and Bpsq, this
condition reads

E ` eφpsq ´ µBpsq “ 0. (5)

Equation (5) may be interpreted as the definition of the effective potential Ueffps, µq “ ´eφpsq ` µBpsq for
the motion of the electrons along the magnetic tube. This equation subdivides the electron phase space into
four distinct regions:

1. For each µ, those electrons with high enough E overcome all barriers of Ueff and travel between the
plasma source (located at s “ 0) and infinity downstream (s “ 8). These regions of phase space
connect with both boundary conditions, and the source electrons in them are termed free electrons.

2. Those regions of phase space ps, E, µq connected with s “ 0 but not connected with s “ 8 are populated
by reflected electrons. The reflection at the turning point surface ensures that f`e “ f´e .

3. Similarly, those regions of phase space connected with s “ 8 but not connected with s “ 0 may only
be occupied by backstreaming electrons from the ambient, if any. As before, reflection ensures that
f`e “ f´e in this region.

4. Finally, there can be isolated regions of existence, not connected to either boundary. Doubly-trapped
electron populations can occupy these regions of phase space. In this region, reflection also enforces
f`e “ f´e .
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The electron model is closed by the boundary conditions for f`e and f´e at s “ 0 and s “ 8, respectively.
For simplicity, at s “ 0, a semi-Maxwellian population of reference density n˚e and temperature T˚e is
considered for f`e ,

fe0dv3 “ n˚e

ˆ

me

2πT˚e

˙3{2

exp

ˆ

´
E

T˚e

˙

dv3. (6)

With regards to the condition at s “ 8, this study does not consider backstreaming electrons, and therefore,
regions of type 3 in the list above will be empty regions with f`e “ f´e “ 0.

While these boundary conditions determine unambiguously the EVDF in regions 1–3, the isolated regions
of type 4 can hold an arbitrary distribution function in this steady-state model. The filling of these regions
can occur during the transient thruster ignition9 or be caused by infrequent but non-zero collisions. The
latter mechanism suggests that in these regions an essentially-thermalized population (with itself and with
neighboring regions of phase space) will exist after sufficiently long times. In this study, these regions are
considered to be populated with the same distribution function as upstream, i.e., a Maxwellian population
of reference density n˚e and temperature T˚e .

It turns out that the spatial dependence of the model on s along each diverging magnetic tube can be
expressed in terms of B by inverting the relation B “ Bpsq. Once f`e pBq and f´e pBq are known everywhere,
any moment Mij of the distribution function, and in particular ne, ue, can be computed via direct integration.
This integration can be carried out in (v‖, vK) space, or alternatively, in pE,µq space after applying the
necessary coordinate transformations:

Mij “ 2π

ż

dv‖dvKfev
i
‖v
j`1
K “

πB

me

ˆ

2

me

˙

i`j`1
2

ż

dEdµrf`e ` p´1qif´e spE ´ µB ` eφq
i´1
2 pµBq

j
2 , (7)

Observe that only free electrons contribute to odd moments in v‖. Finally, the relevant magnitudes for this
study, are defined below:

ne “M00 ue “M10{ne

T‖e “ mepM20{ne ´ u
2
eq TKe “ meM02{p2neq Te “ pT‖e ` 2TKeq{3

q‖e “ pmeM30 ´meneu
3
e ´ 3neueT‖eq{2 qKe “ meM12{2´ neueTKe qe “ q‖e ` qKe,

where all symbols are conventional. Note that q‖e, qKe are parallel heat fluxes of parallel and perpendicular
thermal energy, respectively, while qe is the parallel heat flux of total thermal energy.

C. Iterative solution method

As noted before, on each magnetic tube ion and electron properties depend on the coordinate s only through
the value of the local magnetic field strength, Bpsq{B0. The ion and electron models along a single magnetic
tube can be normalized to remove the dependency on B0, ni0, ui0, n˚e and T˚e , values which are naturally
tube-dependent. This conveniently enables solving the coupled model in 1D to obtain φ and the plasma
properties as a function of B{B0, and then rescaling this solution to each magnetic tube to obtain the 2D
solution.

Therefore, the iterative solution procedure is as follows. The potential is fixed φ “ 0 at the magnetic
throat plane. Given an initial guess of φpBq along a generic magnetic line Bpsq, the ion model is used to
compute nipBq, uipBq, and the electron model to compute nepBq, uepBq. The ion sonic flow condition on
the whole throat plane is imposed at each iteration. Quasineutrality and current-free conditions are then
checked for that guess of φpBq, demanding that the solution satisfies:

nipBq “ nepBq; nipBquipBq “ nepBquepBq, (8)

for all points on the magnetic line (the last expression needs only be imposed at one location to be automat-
ically fulfilled everywhere else). The information on the error committed by the guessed φpBq profile is then
used to update the guess, and the process is repeated until the global error is below a chosen tolerance.

Once the self-consistent solution has been found, other moments of the EVDF can be computed to
analyze the kinetic electron response in the MN. Incidentally, observe that the kinetic model allows for other
conditions than in equation (8) to be imposed. In particular, there exists a whole class of solutions without
zero net current, which can be relevant in future studies.
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III. Results and discussion

A. 1D analysis

The solution of the model for initially sonic Xenon ions (Mi0 “ ui0{cs0 “ 1, µ “
a

mi{me “ 491.689,

χ “ ui0{
a

T˚e {me “ 0.002, for comparison with reference 10) is discussed next. The normalized solution of
φpBq along a generic magnetic line is shown in figure 2. The electric potential undergoes a quick initial fall.
At B{B0 “ 0.01, the relative difference pφ ´ φ8q{φ8 is already around 1.6% only. Then, it tends to the
asymptotic value φ8 “ ´7.4Te0{e. Observe that Te0 and ne0 are unknown a priori, and must be computed
as part of the solution. In the present case, Te0 “ 0.995T˚e and ne0 “ 0.999n˚e .

It is possible to define a polytropic electron model that yields the same total potential fall φ8 along the
nozzle,

γ “
|eφ8|

|eφ8|´ Te0p0q
“ 1.155 (9)

The fluid/fluid FUMAGNO solution for this polytropic electron model has also been plotted on figure 2 for
comparison. While both models tend to φ8, it is clear that the polytropic model does so at a slower rate.
Consequently, the polytropic model tends to underestimate the rate of ion acceleration in the MN. While
the asymptotic value is identical in both models (by our choice of γ), this discrepancy affects most of the
near-region plasma expansion, where thrust is generated and the high magnetization of the MN holds. Thus,
invoking a polytropic approximation, even if chosen consistently with the final asymptotic behavior of the
plasma plume, might have an important effect on the calculation of the MN performance figures like thrust,
specific impulse, divergence and conversion efficiencies, etc. in practice, when only a finite length of nozzle
is investigated.

10-210-1100
-8

-6

-4

-2

0

Figure 2: Solution of the electric potential as a function of the local magnetic field strength, eφpB{B0q{Te0,
using the kinetic electron model (solid line) and the polytropic electron model with same φ8 (dashed line).

The corresponding normalized electron moments in the divergent MN are displayed on figures 3 and 4. In
the case of the average temperature Te, the results from the polytropic model are also shown for comparison.
As it can be observed, the major contributor to even electron moments is at first the reflected electron
population, and soon in the expansion, the doubly-trapped electrons begin to dominate. Odd moments, on
the other hand, only have the contribution of free electrons. The electron bulk velocity increases downstream
in the same manner as the ion velocity; note that the ion properties satisfy ni “ ne and ui “ ue according
to equation (8). These trends agree with those previously reported in 6,18.

The electron parallel and perpendicular temperature components behave differently in the MN, giving
rise to the development of electron anisotropy. While it cannot be appreciated in figure 4, T‖e goes to a non-
zero asymptotic value far downstream, while TKe goes to zero.6 This anisotropy is missed by the polytropic
model.

The average temperature Te in the kinetic solution is nearly constant in the initial part of the expansion
(roughly down to B{B0 “ 0.1), but then cools down gradually. This suggests the possibility of approximating
the average temperature behavior by two simpler patched fluid models.
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Figure 3: Normalized electron density ne and electron velocity ue as a function of B{B0 for a generic magnetic
line. The density and velocity of each electron subpopulation alone are shown. Thin lines represent free
(blue circles), reflected (green squares) and doubly-trapped (red diamonds) electrons. The thick black line
represents the whole electron population with the kinetic model. The dashed line indicates the solution of
the polytropic model with same φ8 for comparison.

The parallel and perpendicular heat fluxes exhibit different sign, and the sign of the total heat flux qe
changes along the expansion. The fluxes of the free electrons alone and the whole electron population differ
due to the different density, velocity, and temperature values for the free subpopulation and for the whole
species (see the definitions of q‖e, qKe, qe in Section B). The heat flux qe for the approximated polytropic
model has been computed from the paraxial energy equation, neglecting electron inertia and anisotropy, and
taking qe{B Ñ 0 far downstream to remove the additive constant:5

qe “ neueTe

ˆ

γ

γ ´ 1
´

5

2

˙

(Polytropic model) (10)

As it can be observed, the polytropic total heat flux is essentially proportional to the pressure neTe, and
misses the complexity of the kinetic solution.

B. 2D analysis

The 1D solution for a generic magnetic line has been used to generate the electron response of a 2D axisym-
metric MN flow with an initially Gaussian density profile that drops 3 orders of magnitude radially, given
by

nep0, rq “ ne0prq “ ne00 expr´pln 103qr2{R2s for: r ď 1; else, nep0, rq “ 0, (11)

Tep0, rq “ Te0prq “ Te00, (12)

uip0, rq “ csp0, rq, (13)

φp0, rq “ 0. (14)

The magnetic field of a single magnetic loop located at the origin is used. The resulting maps of electron
potential φ, electron density ne, electron temperatures T‖e, TKe, Te and electron parallel heat fluxes q‖e, qKe,
qe are shown in figures 5, 6, and 7 down to the very far expansion region (z “ 300R).

Figure 5 shows the quicker drop of φ in the kinetic model toward the asymptotic value φ8 than the
polytropic model, consistent with figure 2. As a consequence of this difference, the gain of ion velocity in
the kinetic model is faster. Of course, the final asymptotic value, related to φ8, is identical in both models.

Figure 6 shows the evolution of the electron density in the MN and the relative contributions of each
electron population (free, reflected, and doubly-trapped) to the electron density ne. As it can be seen, free
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Figure 4: Normalized moments of the electron velocity distribution function as a function of B{B0: T‖e, TKe,
Te q‖e, qKe, and qe for the magnetic line at r0{R “ 0. The moments of each electron subpopulation alone are
shown. Thin lines represent free (blue circles), reflected (green squares) and doubly-trapped (red diamonds)
electrons. The change of sign of qe of free electrons is marked in the plot. The thick line represents the
whole electron population. Where present, the dashed line indicates the solution of the polytropic model
with same φ8 for comparison.

electrons are a minority everywhere, and provide the neutralizing current for the escaping ions. Initially,
reflected electrons abound, but doubly-trapped electrons dominate the far region. The uncertainties of the
kinetic model in the characterization of this subpopulation are therefore important downstream; future work
will improve their description by adding incipient collisionality to the model.

Figure 7 depicts the anisotropy ratio TKe{T‖e, and the average temperature Te for the kinetic and poly-
tropic models. While the electrons start as an isotropic species (according to our boundary condition at the
MN throat), it is evident that anisotropy develops far downstream. However, while the anisotropy ratio goes
to zero at infinity, it is still close to unity for a large part of the MN (at z “ 100R, TKe{T‖e » 90%).

Figure 7 also shows the heat fluxes divided by the density, q‖e{ne, qKe{ne, qe{ne. In agreement with the
1D results of figure 4, q‖e{ne and qKe{ne vary about one order of magnitude along the expansion, and have
opposite signs for most of the MN, while the total heat flux qe{ne has a non-monotonic behavior along each
magnetic tube.

Figure 5: 2d map the electric potential with kinetic model (left) and the polytropic model (right).
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Figure 6: 2D map of the total electron density in the MN, and the fraction of ne due to the free (ne,f ),
reflected (ne,r), and doubly-trapped (ne,dt) electron subpopulations.

The azimuthal electron current is central to the operation of the MN, since it is responsible of the
generation of a radially-confining and axially-accelerating magnetic force density on the plasma, jθeBz and
´jθeBr, respectively.19 The integrated reaction to the latter force density component is felt on the thruster
magnetic field generator and gives rise to magnetic thrust. While jθe is vanishingly small in the high-
magnetization limit, the force densities jθeBz and ´jθeBr are finite and can be obtained from the electron
momentum equation,

jθeB “ ´
BpneTKeq

B1K
` ene

Bφ

B1K
(15)

These force densities are a purely 2D phenomenon, and are plotted on figure 8. The perpendicular pres-
sure gradient is maximal at the MN throat, and decreases downstream, while each of the magnetic field
components behaves differently: Along r “ const lines, Bz decreases monotonically, but Br increases from
zero at the throat to reach a maximum and then decrease. Consequently, the axial force density exhibits
a maximum value in the near plume region. This is where most of the ion acceleration takes place, and
where most of the magnetic thrust is generated, in agreement with reference 20. The radial force density
that confines the plasma in the MN is greater than the axial force density, and is larger at the throat, and
decreases downstream.

IV. Conclusion

The open-sourced kinetic AKILES model and fluid FUMAGNO model have been coupled together to
provide a fluid/kinetic description of the 2D plasma expansion in an axisymmetric magnetic nozzle in the
fully-magnetized, collisionless limit. The resulting model has the same features as the 1D kinetic model for
each magnetic line, which simplifies the iterative solution process.

Electrons, which can be divided into free, reflected, and doubly-trapped populations, do not follow any
simple closure relation, and their temperature and the electric potential are not approximated well by simple
polytropic models even if the same asymptotic value of the potential, φ8, is chosen. This conclusion can
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Figure 7: 2D maps of electron anisotropy ratio TKe{T‖e (left) and average temperature Te in the kinetic
model (center). The temperature of electrons in the polytropic model is shown for comparison (right). The
temperature at the origin (Te00) has been used to normalize the last two plots.

be already extracted from a 1D analysis, and is equally evident in the 2D results. Electrons develop a mild
anisotropy that grows downstream, and exhibit no-trivial kinetic heat fluxes that are missed completely
by the simpler fluid models. These kinetic effects may have an important effect in the calculation of the
magnetic nozzle performance, such as the magnetic thrust generated, whose density was computed using the
2D plasma profiles.

Doubly-trapped electrons are seen to become the dominant population downstream. The present kinetic
model makes the ansatz that these regions of phase space are populated with the same distribution function
as upstream; this assumption must be revised in future work. A way around the indeterminacy of doubly-
trapped electrons is to include small but non-zero collisionallity in the model, and/or to deal with the
transient plume set-up process.

Future lines of research can also study the effect of a background plasma, whose electrons would back-
stream into the magnetic nozzle and affect the expansion. This study is straightforward with the current
model. Additionally, it is also possible to adapt the 2D AKILES/FUMAGNO model to 3D magnetic nozzles
and study directional thrust, relevant for thrust-vector-control magnetic nozzles.16

Clearly, present results are limited by the full-magnetization assumption of ions, which is typically not
met in actual devices for current magnetic field strengths and propellant types, except perhaps in the near
expansion region. Lifting this assumption requires a different iterative solution approach for the model, as
now the plasma properties on all magnetic lines must be solved simultaneously. This effort will be initiated

Figure 8: 2D maps of the axial magnetic force density ´jθeBr (left) and radial magnetic force density jθeBz
(right), normalized with Te00 and ne00, the values at the origin.
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soon by combining AKILES with the partially-magnetization magnetic nozzle code, DIMAGNO.21

Appendix

A. Analogy between fully-magnetized and unmagnetized electron models

It is instructive to compare this magnetized electron model with the unmagnetized model of reference 10,
to see the similarities and analogies between the two limit regimes. In the unmagnetized model, electrons
conserve their mechanical energy E and the canonical angular momentum about the plume axis, pθ “ mervθ.
To close the problem, an additional assumption is needed in this case on the electric potential profile in the
radial direction. An arguably reasonable hypothesis is that the potential has a parabolic shape in this
direction, and can be given as

φpz, rq “ ´
T˚e h

2
0

eh4pzq
r2 ` φzpzq, (16)

where hpzq is a function that represents the radius of the plasma beam (with h0 “ hp0q) and φzpzq is the
potential along the plume axis. Provided that φz is slowly varying, the radial action integral Jr of each
individual electron is an adiabatic invariant of motion that is conserved in average to second order,

Jr “

¿

mevrdr. (17)

Similarly to the magnetized case along a single magnetic tube, the evolution of the phase-averaged EVDF
parametrized in terms of pz, E, Jr, pθq is given by an expression analogous to equation (4), and the axial
electron dynamics is governed by the effective potential Ueffpz, pKq “ ´eφzpzq `

a

2T˚e {meh0pK{h
2, where

pK “ Jr{π ` |pθ|. Therefore, both kinetic models are analogous if the following identifications are made:

B

B0
Ø

h2
0

h2
(18)

µ

T˚e {B0
Ø

?
2
Jr{π ` |pθ|

h0

a

meT˚e
. (19)
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